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Self-Diffusion in One-Dimensional Lattice Gases 
in the Presence of an External Field I 
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We study the motion of a tagged particle in a one-dimensional lattice gas with 
nearest-neighbor asymmetric jumps, with p (respectively, q), p > q, the 
probability to jump to the right (left). It was shown in Ref. 6 that the fluc- 
tuations in the position of the tagged particle behave normally; ((AX) z) ~ Dt. 
Here we compute explicitly the diffusion coefficient. We find 
D = (1 - p ) ( p  --q), where p is the gas density. The result confirms some recent 
conjectures based on theoretical arguments and computer experiments. 

KEY WORDS: Tagged particle; self-diffusion coefficient; asymmetric simple 
exclusion process. 

1. INTRODUCTION 

In this paper we study the diffusion coefficient of a tagged particle in an 
asymmetric nearest-neighbors lattice gas (simple exclusion process) in one 
dimension. In the lattice Z, particles are distributed according to a product 
Bernoulli measure #o with density p > 0. Each particle waits a (random) 
exponentially distributed time with mean 1 and then attempts to jump to its 
right (left) nearest neighbor with probability p ( q  = 1 - p ) .  When p 4: q we 
say that an external field is present. The jump actually occurs iff the chosen 
site is empty. 

At time 0 we put a tagged particle at the origin, i.e., we consider as 
initial distribution the measure rio, the Bernoulli measure #p conditioned on 
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there being a particle at the origin. Let X(t) be the position of the tagged 
particle at time t; by definition X(0) = 0 (rio is the equilibrium measure for 
the process as seen from the tagged particle(5)). The problem we study is the 
limiting behavior of X(t) when the medium is in equilibrium. First of all one 
notes that the increments X ( t ) -  X(O) are stationary and a drift is present: 
EY(t) = ( X ( t ) ) =  ( p - q ) ( 1 - p )  t. In the usual scaling for the central limit 
theorem one looks at t - 1 / Z [ X ( t ) - ( p - q ) ( 1 - p ) t ]  and defines the 
"diffusion coefficient" D as 

D =:  lim 1E(X( t ) - -E(X( t ) ) )  2 (1.I) 
t --,oe t 

The problem is then to prove that D exists, is finite, and not zero. 
In Section 2 we prove the following theorem. 

Theorem 1. Let X(t) [X(0)--  0] be the position of a tagged particle 
in the one-dimensional asymmetric simple exclusion process with probability 
p(q = 1 - p) to jump to the right (left); p > q. Let ~o be the product measure 
with parameter p conditioned on there being a particle at the origin. Then 

E(X(t)) = t(1 -- p)(p -- q) 

D =  lim 1E(X( t ) - -E(X( t ) ) )2= (1 - p ) ( p - - q )  (1.2) 

where E is the expectation with respect to the process with initial measure 

Equation (1.2) is true also i f p - - q .  In this case D = 0. This is a well- 
known fact. Arratia ~2) showed that the right normalization for X(t) in the 
symmetric case is t 1/4. In fact he proved a central limit theorem for t 1laX(t) 
and he computed the exact value of limt~ ~ t 1/2 EX(t)2. In his paper (see 
Introduction in Ref. 2) he conjectured that in the' asymmetric case D is given 
by ( 1 - - p ) ( p - q ) .  Furthermore computer simulations (1~ (see Ref. 8 for the 
case p = q) and theoretical considerations (1'3) gave support to the conjecture, 
and indeed a partial proof of Eq. (1.2) has been obtained by Kutner and van 
Beijeren. ~1~ Finally, Kipnis in a recent paper (6~ shows that in the limit as 
t~oo(1/~/t)(X(t)--E(X(t))) goes to a Gaussian random v'ariable with 
covariance D > 0. 

The proof of Theorem 1 is based on a generalization (see Theorem 2 
below) of a formula for D proved in Ref. 4 in the setup of reversible Markov 
processes, i.e., where there is detailed balance in the stationary state. The 
derivation of this formula is quite elementary; we obtain it following an 
argument given in Ref. 3. 
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To explain the idea we have in mind, let us first consider the reversible 
case, that is, the same model described so far but with p = q = 1/2, so 
E(X( t ) )  = 0 and do is reversible. The starting point is the analogy with 
"deterministic systems." We call here "deterministic" the systems for which 
the variable X(t )  can be written as X(t )  = f t  o ds v(s), where (the "velocity") 
v(s) is a centered random variable in a reversible process. Then, defining 

f ( t )  = E(X( t )  z) we use integration by part formula to write 

- t  

f ( t )  = t f ' (O) + I ds (t - s ) f ' ( s )  (1.3) 
d 0 

where f '  and f "  are the first and second derivatives, respectively. Then 

1 
f ' ( t )  = ~ i m - ~ E ( X ( t  + h) 2 - X( t )  2) 

1 2 _} 
= lim~_~o ~-  e ( x ( t  + h) - x ( o )  + 2 limh~o E(X( t )  [X(t + h) - X(t)]) 

(1.4) 

The first limit in Eq. (1.4) is zero because [Y(t + h ) - X ( t ) ] 2  = 0(h 2) and so 

f ' ( 0 )  = 0 (1.5a) 

and 
f ' ( t )  = 2E(X( t )  v(t)), t 4:0 (1.5b) 

By using stationarity we have 

f ' ( t )  = 2 d dt E([X(t) - X(0)] v(t)) 

d 
= 2 ~ E ( [ X ( 0 )  - X(--t)] v(0)) (1.6) 

= 2 E ( v ( - t )  v(0)) = 2E(v(t)  v(0)) 

Combining Eqs. (1.3), (1.5), and (1.6) we obtain 

J2 E(X( t )  2) = 2 ds ( t -  s ) E ( v ( s )  v(0)) (1.7) 

We now divide by t and take the limit t ~ oo. Since the process is reversible 
E(v(s)  v(0)) ) 0, hence, by the monotone convergence theorem, we get 

;? O = 2 ds E(v(s )  v(0)) (1.8) 
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Now one has two problems, to show both that 

(A) D < oo, that is f~  dsE(v(s)v(O)) < ~ ;  and 
(B) D > 0 .  

When the system is not deterministic, the situation is quite different. Let 
us come back to our symmetric lattice gas model. Here we quote Ref. 3: "A 
small conceptual problem is that in this model under consideration the 
particles are assumed to jump instantaneously, hence the velocity ... is not 
defined in the usual sense." We then define an effective velocity v~ff as 

lim 1 h +~ X E(X(h) - X(O))/,Yo) = v err(O) (1.9) 

where ~ 0  is the a-algebra that gives the specification of the past until time 0. 
Obviously, in the deterministic case Veff=v. In the symmetric simple 
exclusion, Vefr(0) is given by the rate of jumps to the right minus that to the 
left, hence 

Veff(O ) = �89 -- r/o(1)] - [1 -- r/o(--1)] } = �89 ) -- r/o(1)] (1.10) 

where tlt(x) = 1 (0) if an time t there is (is not) a particle at site x C Z. 
We can now proceed as before. Starting from the identity (1.3) we 

notice that Eq. (1.4) is still true. However,  the first limit in the right-hand 
side of Eq. (1.4) does not vanish; indeed it is easy to see that 

1 
limh_~o -ffE(X(t + h) -X( t ) )  z = -~E([1 - qt(1)] + [1 - ~/t(-1)]) = 1 - p  > 0 

(1.11) 

Here stationarity has been used. The limit in Eq. (1.11) is usually referred to 
as a martingale contribution. As we learn from Ito calculus we cannot 
generally neglect the square increment of our v0riable since, like in Brownian 
motion, the increments are of order , f i  and not t. On the other hand the 
second limit in the right-hand side of Eq. (1.4) gives the same answer since 
Eq. (1.9) holds. So in this case [compare to Eq. (1.5)] 

f ' ( t )  = (1 --p) + 2E(X(t) Veff(t)) (1.12) 

By taking the derivative of Eq. (1.12) we do not get the same answer as in 
Eq. (1.6), in fact there is still another very crucial difference: as in Eq. (1.6) 
we have to compute 

f "  (t) ---- 2 4 E([X(0)  -- X(--t)]  v elf(0)) (1.13) 
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but Eq. (1.9) does not help us anymore: we need to introduce also the 
backward effective velocity, that is 

1 
limh_~o h -  E ( X ( - h )  - X(O)/~o) = veff(0) (1.14) 

where J00 now is the a-algebra that gives the specification of the future 
starting from time zero. 

In the symmetric simple exclusion, it is easy to see that 

tTeff(t ) = Veff(t ) Vt (1.15) 

We observe that in the deterministic c a s e  /~eff = - - U .  
From Eqs. (1.14) and (1.15) we get 

d 
f "  (t) = 2 ~ -  E([X(0) -- X(--t)] veff(0)) = --2E(v elf(0) v err(t)) (1.16) 

Hence the final formula for D is 

J? D = 1 --p -- 2 ds E(veff(s ) Veff(0)) (1.17) 

Comparing the formula Eq. (1.16) with that obtained in the deterministic 
case Eq. (1.8) we notice that we do not have to worry about problem (A) 
because Eq. (1.17) automatically shows the finiteness of both D and the 
integral of the velocity autocorrelation function. We want to emphasize that 
Eq. (1.17) makes life very easy: all that is left to prove is that D > 0! In 
Ref. 4 there has been derived under very general conditions [more or less the 
existence of the limits in Eqs. (1.9) and (1.11) and the validity of Eq. (1.15)] 
in the context of reversible Markov processes a formula like Eq. (1.17), and 
convergence to Brownian motion was also proved (invariance principle). 

Now let us come back to our process. In the symmetric case Arratia (~) 
proved that D = 0, as we pointed out before. One may check it directly from 
Eq. (1.17). A formula analogous to Eq. (1.17) holds also in the asymmetric 
case. Everything is the same except that Eq. (1.15) does not hold and we are 
left with 

E ( X ( t ) - E ( X ( t ) ) 2 ) = t ( 1  - p ) - 2  ds (t-s)E(6eff(O)verr(s)) (1.18) 

Here we do not have automatically the convergence of the integral because 
we do not know whether the integrand has a definite sign. We will find that 

o d S  IE(tTeff(0) Vefr(s)l < oo (1.19) 
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by actually computing the integral and as a consequence we get the exact 
value of D in this case. 

The above arguments prove the following theorem. 

Theorem 2. Let {~, t C R} be a Markov process with equilibrium 
measure/~. Let X(t) be a centered process on the path space measurable with 
respect to ~ = a-algebra generated by {~, s ~< t}. Assume p(X(0) = 0) = 1. 
Assume the following three limits exist finite in L2(~): 

lim 1 ~o T E(X(h) /~ )  = 0+(r 0+ ~ L 2 ~ )  (1.20a) 

1 E ( X (  h ) )2 = C (1.20b) lira 
h ~ 0  t /  

hE(X( -h ) / Jo )=O- (~ ) ,  0 CL2(~) (1.20c) lira 
h ~0  

where ~ o  is the a-algebra of the future, that is, Joo is generated by 
{~s, s > 0}. Assume also that 

fo~ [E(0_(~0) 0+(~s))l < oo (1.21) 

Then the following limit exists and it is finite: 

D = lim --1 E(X(t)2) 
t --,oe t 

Furthermore 

D = C - 2 ds E(0 _ (~o) qt + (r 

where C is given in Eq. (1.20). 

(1.22) 

2. PROOF OF THEOREM 1 

The proof of Theorem 1 is a trivial consequence of Theorem 2 and 
Lemma 1, Section 1 of Ref. 6 as we shall see in a while. We first need to 
introduce some notation and definitions. We use the standard notation of 
lattice gas models, so r /E {0, 1} z denotes a configuration of particles, 
tl(x)---- 1 (respectively, 0) if the site x E Z is occupied (empty). We describe 
the system as seen from the tagged particle, so the state space is 
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~ =  {~/E {0, 1}z: r/(0) = 1}. The generator of the dynamics is given by the 
sum of two generators ( f  is a cylindrical function): 

LJ'(tl) = L~f ( t l )  + Lo f ( t l )  (2. la) 

where L 0 describes the shifts of the system due to the motion of the tagged 
particle and L~ describes the motion of the other particles. More precisely 

L l f ( r ] )  = ~ r](x)[1 - r/(x + 1)] p[f(?l x'x+l) - f ( r / ) ]  
x~0 

+ r/(x)[1 -- r/(x -- 1)] q[f(r /x '~-l)  -- f(r/)] (2.1b) 

L o f ( q  ) = [1 - t/(1)] p [ f ( v  I N O'l) - f (q ) ]  

+ [1 - 17(-1)] q [ f ( r , q  ~  --f(~/)l (2.1c) 

where qx'Y(z) denotes the configuration r/ with the occupation number in x 
and y interchanged and r x is the shift by x, i.e., (vxq)(z)  = q(z + x). 

L generates a Feller process on ~ .  We will consider the process at the 
equilibrium with starting measure the Bernoulli measure ~o with density 
p C (0, 1) and conditioned to have a particle at the origin; cf. Ref. 5 for 
instance. Obviously, the position X(t )  of the tagged particle is given by the 
number' of shifts of the process r/s up to time t. We label the particles of the 
initial configuration r/ according to their order. So we get a sequence 
{xi},.~z,X0=0 and Xg is the position of the ith particle. Because of the 
nearest-neighbor assumption the particles keep their labels and xg(t)( iC Z)  
denotes the position at time t of the ith particle, x i (0 )=  x;. The process of 
the number of consecutive empty sites to the right of each particle is a zero 
range process. (7'9) The state space is N z, the configuration ~t ~ NZ is defined 
by ~t(u)= number of successive empty sites to the right of xu(t ). The 
generator L '  of the process ~t is given by (g is a bounded cylindrical 
function on N z) 

L ' g ( ~ ) =  ).~ l{~(u)~> 1}(p[g(~U'~- l ) - -g(~)]  +q[g(~U,~+l )_g(~)] )  (2.2a) 
UEZ 

where 1{.} is the characteristic function of the set {.} and 

~ ( z ) ,  z 4= u, v 

~"'~(z) = ~(u) -- 1, z = u (2.2b) 

~(v)  + 1, z = v 

That is, with rate one from each nonempty site a particle jumps to the right 
(left) with probability q (p). [Note: q (p) to the right (left).] The measure v o 

822/38/3-4-12 
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corresponding to ~o is a product measure with geometric distribution, 
namely, vo(~(x ) = k) = (1 - p)k p, x ~ Z. We will use later that 
vo(~(x ) > O) = 1 - p .  Define N(t)  to be the difference between (1) the number 
of particles which jumped in [0, t] from site 0 to site-1 and (2) that of the 
particles which jumped from site - 1  to site 0. 

N(t)  is a process adapted to ~t and, by definition, N ( t ) = X ( t )  the 
position of the tagged particle in the simple exclusion process. 

Proof  of  -rhoorom I. To prove Theorem 1 we use Theorem 2 with 
respect to the N(t)  process. We have to show that the limits in Eqs. (1.19) 
exist. First of all we observe that 

E(N( t ) )  = t (p  - q)(1 - p) 

Furthermore one easily checks that 

O+(~t)= ~im 1 x E(N( t  + h ) -  N( t ) /~c t )= 1 (~t(0) > 0} p 

- l { ~ t ( - 1  ) > 0} q (2 .3a)  

1 
C = E(~im - -~E(N(h)2 /~o) )  = E(l{~t(0 ) > 0} p + l{~t(--1 ) > 0} q) 

= (p +q)(1  --p)  = (1 --p)  (2.3b) 

r = ~im h E ( X ( t  - h ) - X ( t ) / ~ ) = - l { r  ) > 0}p 

+ l{~t(0 ) > 0} q (2.3c) 

where as in Theorem 2, ~ is the a-algebra generated by {~s ; s ~< t} while J t t  
is that generated by {~s; s > t}. 

We apply Theorem 2 to the following random variable on the path 
space 

No(t ) = N(t )  - t(1 - p) (p  - q) (2.4) 

So, the diffusion coefficient defined as D = limt_.o o (I/ t)E(No(t)  2) is given by 

D = ( 1 - - p ) - 2  ds[E(ql ( ~ 0 ) r  q)2] (2.5) 

provided that Eq. (2.6) below is true 

~o ds IE(• (~0) r  -- (1 _ p ) 2 ( p  _ q)21 < oO (2.6) 
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We prove Eq. (2.6) by computing the exact value of the integral in the right- 
hand side of Eq, (2.5). 

The starting point is the following identity: 

where 

I 
GO 

dsE(r ( 1 - p ) 2 ( p - q )  2) 
~0 

= --p2A(1) - q2A(--1) + 2pqA(O) (2.7) 

A(x) = too dsE(ll~s(x) > 0} 1{~o(0 ) > 0} - (1 _p)2)  (2.8) 
~ 0  

In Ref. 6 it is proven that A(x) is well defined and its value explicitly 
computed, cf Lemma 1 of Section 1 of Ref. 6. Unfortunately this is not 
evident at first sight because of the different notation we are using. For the 
convenience of the reader we briefly report some details. 

We rewrite A(x) in the following way: 

A(x) = ds [P({~,(x) > 0}/{~0(0 ) > 0 } ) -  P({~,(x) > 0})] P({~0(0) > 0}) 

f? = ( 1 - p )  ds [/3({~s(X) > 0 } ) -  P({r > 0})] (2.9) 

where /~({.}) [respectively, P({.})] is the probability of the event {.} with 
respect to the zero range process 4t (respectively, it) with starting measure 
vo(') = vo('/{~(0) > 0}) (respectively, vo). Since v o is a geometric measure, it 
is not difficult to construct a measure 70 on (NZ) 2 with support on the 
following set of configurations: 

= {(~, 4): ~(z) = 4(z), z 4: 0; 4(0) = ~(0) + 1} (2.10) 

and with marginal distributions v o and vo" We construct a coupling between 

the process ~t and 4t (with law P and /~, respectively). We require that the 
law f i  of such a coupling satisfies conditions (a), (b), and (c) below: 

a. The initial distribution is Yo" 
b. The marginals distributions are P and/3  
c. Vt ~> 0 the number of sites z such that ~t(z) ~ 4t(z) is one. 

(That is, all the particles in the 4t process move as those of the ~t 
process except for the extra particle.) 

The only difference between the two processes is the extra particle, so once 
we define its law f i  will be completely determined. To satisfy conditions (b) 
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and (c) we impose that the extra particle jumps only if it is alone at its site. 
Given that the extra particle is the only one present at its site, it waits an 
exponentially distributed random time of parameter 1 and then, finally, it 
jumps to the right (left) with probability q(p). Define the random variable 
z(t) as the position at time t of this extra particle. So we have defined the 
joint law of ~(t) and z(t). Now define ~t(x) = ~t(x) § 1 {z(t) = x}. In this way 
the coupling P is well defined and satisfies (a)-(c) above. Let/T be the expec- 
tation with respect to the coupling/T. Let {S(n), n = 1, 2,...} be the following 
sequence of stopping times [S(0) - 0]: 

S(n)=inf{t > S ( n -  1);[z( t ) -z(S(n-  1)) I = 1} (2.11) 

That is, S(n) is the stopping time corresponding to the nth jump of the extra 
particle. It follows from the definition of the coupling fi  that 

(f? dt l{S(n)<,t < S ( n +  1)} lt~t(z(S(n)))=O}/~Y-~) = 1 (2.12) f 

where ~ is the a-algebra generated by {(~t, zt), t <~ S(n)} a n d / T ( . / ~ )  is the 
conditional expectation. 

Equation (2.12) plays a key role. Its proof is straightforward: the 
integrand in Eq. (2.12) is simply the total amount of time that the extra 
particle waits between two jumps when no other particles are present. By 
definition this random time is exponentially distributed with parameter 1, 
hence its expectation equals one. Now we come back to the computation of 
A(x) [see Eq. (2.9)]: 

;/ A(x) = (1 --p) dsff,(l{~,(x) > 0} - l{~,(x) > 0}) 

;? = ( l - p )  as•(l{z(s)=xt l{~s(X)=0}) 

= (1 - p) ~ N z ( s . )  ; x) 
n = 0  

• f (~] 1Is(n) ~ s < s(n + 1)t lt~,(x)= 0//~) 
oo 

= (1 -p)  2 p(n,x) (2.13) 
n ~ 0  

where p(n, x) is the probability of hitting x at time n for a discrete asym- 
metric random walk which jumps with probability q(p) to the right (left). 
The value of the sum in the right-hand side of Eq. (2.13) is 
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1 
- - ,  x ~ < 0  
p _ q  

p ( n ,  x)  = 1 (2.14)  
,=0 ( ~ ) X , x > 0 p _ q  

cf. L e m m a  1 o f  Sec t ion  1 o f  Ref.  6. Subst i tu t ing  Eq. (2.14)  into Eqs.  (2.7) 

and (2.5) we have  

D = (1 - - p ) ( p - - q )  
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